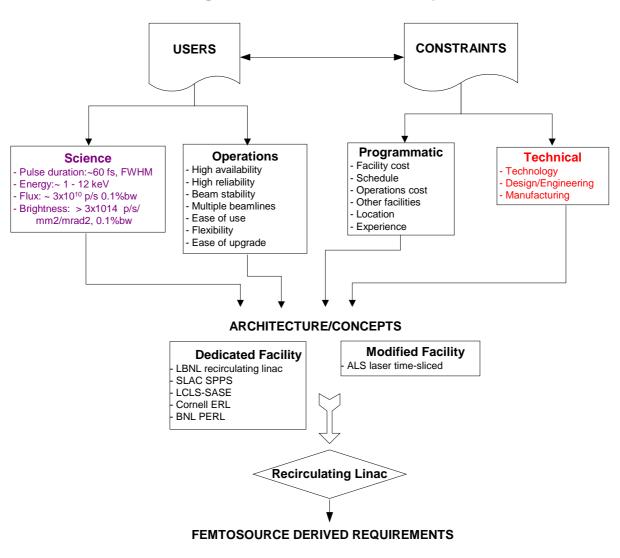
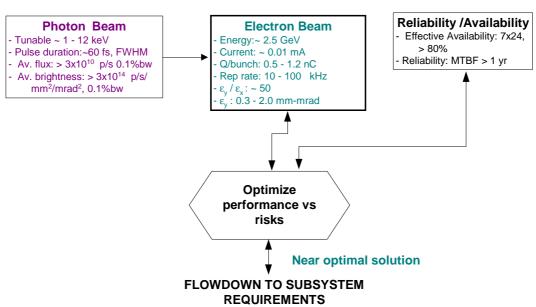

Applying Overt Systems Thinking to the Design of the Femtosource

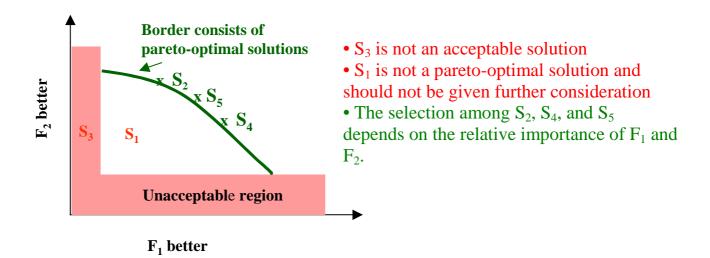
Ed Kujawski **Systems Engineering** x6932


Topics

- ➤ Key principles of "systems thinking" for designing the femtosource
- > Defining the femtosource trade space
- ➤ Mathematical formulation of the design problem
 - Limitations and complications
- ➤ Some simplified equations for insight into the femtosource trade space
- ➤ Identifying injector-gun alternatives
- ➤ Preliminary evaluation of Risk Vs. Performance for the Cs₂Te cathode
- ➤ The DoE model of a project life-cycle
- ➤ The next step?


Key Principles of Systems Thinking for the Femtosource

Defining the Femtosource Trade Space



TRADE SPACE

Mathematical Formulation of the Design Problem

- ✓ Simultaneously optimize several possibly conflicting criteria given by functions $\{F_1, F_2, ..., F_n\}$ that depend on the design variables $\{x_1, ..., x_k\}$ and are subject to the constraints, $\{C_1, ..., C_m\}$.
 - This is formally nice, but there may not be a dominant solution!
 Also system design is an NP-complete problem!

It is important and simple (but not easy) to achieve a "near optimal" design given a feasible design!

Some Simplified Models for Insight into the Design Trade Space

Notes:

- Color code

XXX: Technology constraint

YYY: Science driver ZZZ: Design trade

- Use of natural units.
- 1. Cathode Emittance (C. Sinclair)

 $Q_b \le Q_{stored} / 10$: To avoid space charge problems

 \succ ε_{n} [mm-mrad] >= $\{(Q_{b}[pC]/111*EF_{cath}[MV/m])*E_{thermal}[51 meV])\}^{1/2}$

To achieve lower emittance:

- ✓ Design photocathode and gun cavity with
 - -Lower characteristic energy of emitted e's, Ethermal
 - -Higher E-field at cathode, EF_{cath}
- ✓ Reduce charge per bunch, Q_b
- 2. **Photoinjector Laser Power, P**_{laser} (C. Sinclair)
- $ightharpoonup P_{laser}[W] >= (Q_b[mC]*R_r[/sec])*(124/\lambda_{laser}[nm])/QE[\%]$

To require lower laser power:

- ✓ Use cathode with higher quantum efficiency, QE
- ✓ Use cathode with lower operating wavelength, λ_{laser}
- ✓ Reduce Q_b
- ✓ Reduce repetition rate, R_r
- 3. Flux, S_n (LBNL X-Ray Data Booklet)
 - $\epsilon_n[keV] = 0.95*n*E_b^2[GeV]/(1 + K^2/2)*\lambda_u[cm]$
 - $\begin{array}{ll} \blacktriangleright & S_n[ph/s\text{-}0.1\%\ bw] = (1.431*10^{14})*N_u*Q_n(K)*\ Q_b[C]*R_r[/sec] \\ K = 0.934*\lambda_u\ [cm]\ *B_0[T] \end{array}$

To achieve higher flux:

- ✓ Design higher performance undulator (B_0 , λ_0 , N_0)
- ✓ Design machine with higher beam current (Q_b, R_r)

To achieve different photon energies:

- \checkmark Select beam energy, E_b
- ✓ Select and tune undulator parameters
- ✓ Use higher-order harmonics, n

- **4. Peak Brightness** (LBNL X-Ray Data Booklet)
- $\begin{array}{ll} \blacktriangleright & B_n(0,0) \; [ph/s/mm^2/mrad^2 \; 0.1\% \; bw] = S_n/\{(2\pi)^2 \; \sigma_{Tx} * \sigma_{Ty} * \sigma_{Tx'} * \; \sigma_{Ty'} \; \} \\ & \sigma_{Tx} = \{ \; \sigma_x^{\; \; 2} \; + \; \sigma_r^{\; \; 2} \; \}^{1/2} \; \; ; \; \; \sigma_{Tx'} = \{ \; \sigma_{x'}^{\; \; 2} \; + \; \sigma_{r'}^{\; \; 2} \; \}^{1/2} \\ & \sigma_{r'}^{\; \; \; } = (\lambda_n * L_u)^{1/2} \; \; ; \; \; \sigma_r^{\; \; } = (\lambda_n / L_u)^{1/2} \end{array}$

To achieve higher brightness:

- ✓ Increase flux
- ✓ Reduce beam sizes, σ_{Tx} and σ_{Ty}
- ✓ Reduce beam divergences, $\sigma_{Tx'}$ and $\sigma_{Ty'}$
- 5. Pulse Length, σ_z (A. Zholents et al.)

$$\sigma_z >= (E_b / eU * k_{rf}) * \sigma_y^{rf} * \{1 + (\sigma_r / \sigma_y)^2\}^{1/2}$$

$$\sigma_z >= (E_b / eU * k_{rf}) * \sigma_{v'}^{rf} * \{1 + (\sigma_{r'} / \sigma_{v'})^2\}^{1/2}$$

To achieve lower pulse duration:

- ✓ Reduce the vertical angular size of the e-beam in the deflecting cavity, σ_v^{rf}
- ✓ Increase the RF deflection voltage, eU
- ✓ Increase the RF wave number (frequency), k_{rf}
- ✓ Reduce the diffraction limited size of the radiation, σ_r

Notes:

- Need to examine the importance of the corrections and/or use more accurate equations where necessary.

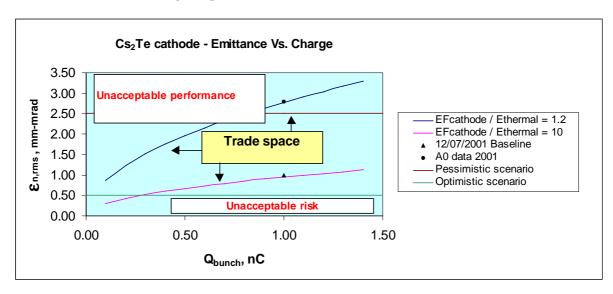
Trade Studies: Injector cathode & laser Leading Photocathode Alternatives

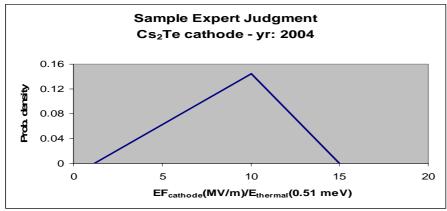
	RF Guns		DC Guns	
Criteria	Metal	Cs₂Te ^{&} ⁺	GaAs	CsSb
Projected Q _{bunch} , nC ⁺	1.0	1.0	1.0	
I, mA ⁺	0.01	0.01	0.01	
Normalized emittance,	?	2.8	?	
measured @1nC,				
mm-mr				
Projected normalized	1.0	1.0	1.0	
emittance,				
mm-mr@1nC ⁺				
E_{thermal} , $\beta(51 \text{ meV} = 300^{\circ}\text{K})$?	6.0	1.2	
EF _{cath} , measured, MV/m	?	35 - 40	10 - 20	
Projected EF _{cath} , MV/m ⁺	?	54.1	10.8	
P*Qe, W-%	0.0045	0.0045	0.0015	
Best Qe, measured, %		24 @ prep		14@ start
Projected life, years	years	years*	years^	Low [@]
Projected Qe, lifetime, %	0.01	1.0	10.0	
Lifetime limiting factors	Heat removal	Coating, Ion bombardment,	Ion bombardment	
Needed improvements	Preparation technique	Preparation technique	Field emission effectsDC power supply	
Probability of success /	Medium	High/Medium	Medium	
Confidence level		0		
Design complexity	- High vacuum	- High E _{cath}	- Very high vacuum	
		- Low ε		
Laser power, mW	450.0	4.5	0.15	
Laser sources	UV	UV below ~ 275nm	780nm	
Laser risk	Medium	Low	Low	
Comments	Not actively pursued by	1st choice: Tesla	- Jefferson Lab	PERL studies
	others because of low		- PERL fallback	
	Q_e .			
Conclusion ?	1st backup	Baseline	Open	Drop!

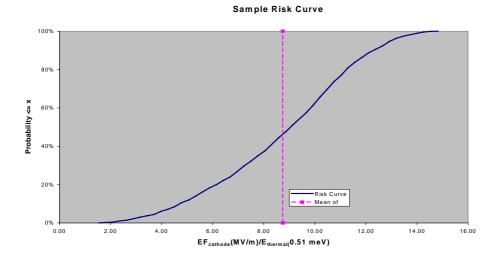
⁺ Femtosource Advisory Committee Meeting 12/7/01

Scaled from 5 hours for a cathode spot size of 1 mm radius and 200 mA current.

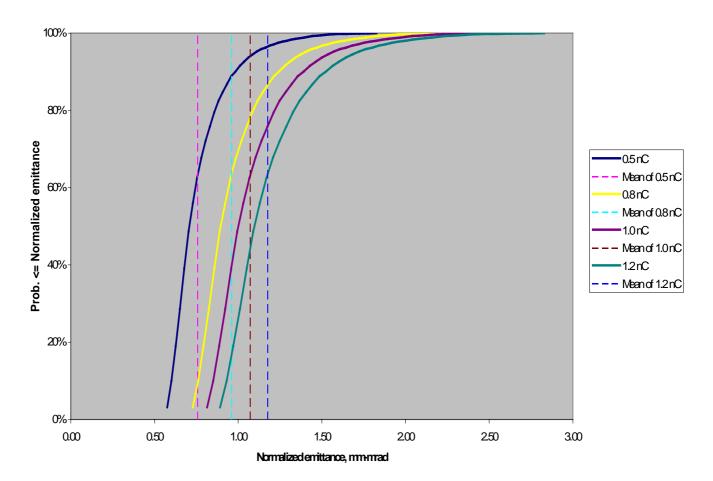
[&]amp; Use of A0 Photoinjector data

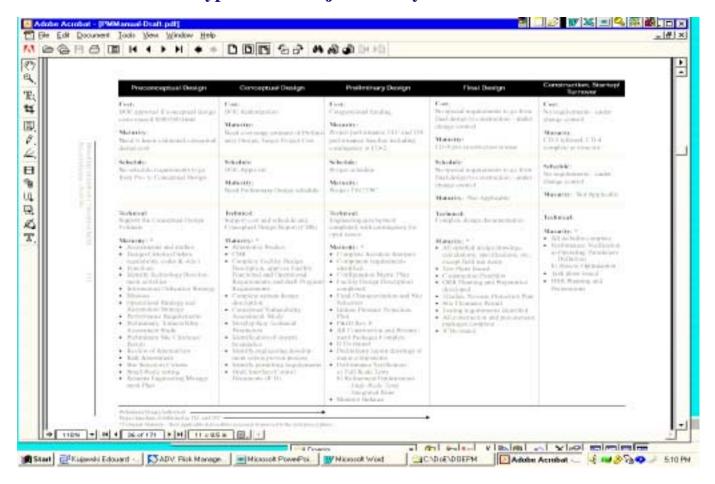

^{*} Based on QE of 2% for 200 mA after 1 year.


[^]Based on lifetime of 10⁵ C/cm² for DC gun.


[@] Lifetime decays exponentially. 2.3 hrs to Qe of 1% demonstrated in 1992.

Cs₂Te Cathode - Risk Vs. Performance

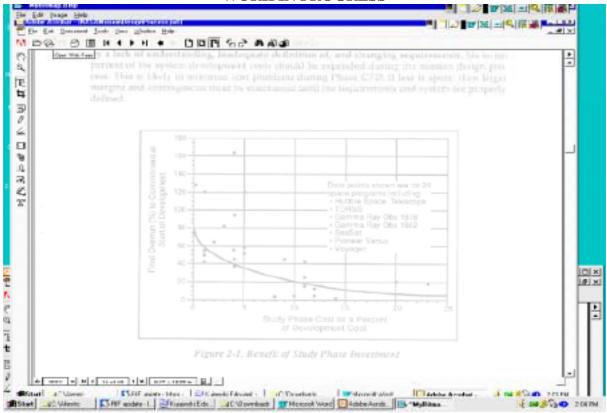

 $\geq \epsilon_n \text{ [mm-mrad]} >= \left\{ (Q_b[pC]/111*\text{EF}_{cath}[MV/m])*\text{E}_{thermal}[51 \text{ meV}]) \right\}^{1/2}$


Emittance/Q_{burch} Risk Profiles Cs2Te cathode - Yr 2004

Some Important Questions We Can Address

- What is the impact on technical performance and risk of proceeding with a 1.2 nC / bunch Cs₂Te design?
- What Q_{bunch} gives a >= 80% of probability of achieving an emittance <= 1.0 mm-mrad in the near future?
- Others?

Typical DoE Project Life-Cycle



- > ~ 80 to 90% of the development cost of a large system is predetermined by the time 5 to 10% of the development effort has been completed!
- > Effort in the study phase results in significant benefits and payback.

E_Kujawski Femto_system_think2.doc

03/20/02

WORK IN PROGRESS

